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Summary. MADS (Model Analysis & Decision Support; http://mads.lanl.gov) is an open-source 
object-oriented code that provides an integrated computational framework for a wide range of 
model-based analyses, and supports scientifically defensible decision making. The code targets 
the implementation of computationally efficient and robust algorithms that can perform model-
based analyses requiring a relatively small number of model evaluations, and can execute 
simulations in parallel on multiprocessor clusters. Two new algorithms have been recently 
developed and implemented in MADS for global uncertainty analysis (ABAGUS: Agent-Based 
Analysis of Global Uncertainty and Sensitivity) and global optimization (Squads). These 
algorithms have been applied in a series of investigations related to groundwater environmental 
management at the Los Alamos National Laboratory Site including the Sandia Canyon 
chromium investigation. 

 
 
1 INTRODUCTION 

Complex physics models are frequently applied to perform various types of model-based 
analyses such as parameter estimation, uncertainty quantification, risk assessment and decision 
support. However, these models are typically computationally intensive requiring relatively long 
execution times (usually from several minutes to several hours). This limits our ability to 
perform detailed model-based analyses of model estimates and predictions because these 
analyses typically require a substantial number of model runs (usually from about 100 to more 
than 1,000,000 depending on the analysis approach). Therefore, it is important to develop 
computationally efficient and robust algorithms that can perform model-based analyses requiring 
a relatively small number of model evaluations. The code MADS1 (Model Analysis & Decision 
Support) is designed to provide an integrated framework for a wide range of computationally 
efficient and robust model-based analyses to supports scientifically defensible decision making. 
Here we will discuss recent developments in two algorithms implemented in the MADS toolkit: 
(1) Agent-Based Analysis of Global Uncertainty and Sensitivity (ABAGUS) and (2) Squads. 
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2 MADS 

MADS (Model Analyses & Decision Support) is an open-source, object-oriented code that 
provides an integrated computational framework for a wide range of model-based analyses, and 
supports scientifically-defensible decision making. The code can be executed under different 
computational modes, which include (1) sensitivity analysis, (2) model calibration (parameter 
estimation), (3) uncertainty quantification, (4) model selection, (5) model averaging, and (6) 
decision analysis. MADS can be externally coupled with any existing model simulator through 
integrated modules that read/write input and output files using a set of template and instruction 
files. MADS can also work with existing control, template and instruction files developed for the 
code PEST2. The code is internally coupled with a series of built-in analytical simulators 
(currently the analytical solutions are for contaminant transport in aquifers3 only). In addition, 
MADS can be used as a library (toolbox) for internal coupling with any existing object-oriented 
simulator using object-oriented programming. 

MADS provides (1) efficient parallelization, (2) runtime control, restart, and preemptive 
termination, (3) several Latin-Hypercube sampling techniques (including Improved Distributed 
Sampling4), (4) several derivative-based local Levenberg-Marquardt optimization methods 
(including geodesic acceleration5), (5) several single- and multi-objective global optimization 
methods (including Particle Swarm Optimization6, PSO7, TRIBES8), and (6) local and global 
sensitivity and uncertainty analyses, and (7) model analysis and decision support techniques such 
as GLUE9 and information gap10. MADS is characterized by several unique features: 

• Adaptive execution with minimum input from the user; for most analyses, all the 
parameters controlling the performance of the algorithms for model-based analyses are estimated 
internally in the code; if needed, the user has the flexibility to specify a wide range of options. 

• The same problem input file is sufficient and can be applied to perform all the possible 
model analyses supported in the code. 

• Most of the model analyses (e.g. calibration, uncertainty quantification, and sensitivity 
analysis, etc.) can be performed using a discretized parameter space; this can substantially reduce 
the computational effort to perform model analyses of complex physics models with long 
execution time. 

• By default, all the model parameters are internally normalized and transformed in a manner 
that substantially improves the derivative-based optimization algorithms. 

• Highly-parameterized inversion, where the number of model parameters is substantially 
greater than the number of model constraints (calibration targets or model observations); a 
similar approach is called SVD assist in the code PEST2. 

• 'Acceptable' calibration ranges for each optimization target can be implemented; in this 
way, the optimization can be directed to search for models producing estimates only within user-
defined acceptable calibration ranges. For example, once the model estimates are within 
acceptable calibration ranges the optimization is terminated. 

• Allows the use of an acceptable calibration range for the objective function; in this way, 
acceptable model solutions can be identified as those producing objective functions below a 
predefined cutoff value; once the objective function is decreased below the cutoff value, the 
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optimization is terminated. 
• Implements a series of alternative objective functions (OF). 
• Provides the option to perform a series of optimizations with random initial guesses for 

optimization parameters; the code can also automatically retry the optimization process using a 
series of random initial guesses until an acceptable calibration is achieved. 

• Automatically detects and utilizes the available parallel resources; automatically analyzes 
the runtime performance of the available parallel hosts (processors); hosts not capable of 
performing the requested parallel jobs are ignored; automatically tracks the multiple model files 
during parallel execution automatically; for the user, there is no difference between serial (using 
single processor) and parallel mode of execution. 

• Performs automatic bookkeeping of all the model results for efficient restart and rerun of 
MADS jobs (e.g. if the previous job was not completed) and additional posterior analyses. 

• Allows the user to perform different types of analyses based on model results stored during 
previous MADS runs; for example, model runs obtained during model calibration can be utilized 
in posterior Monte Carlo analyses. 

• Object-oriented design of MADS allows for relatively easy integration with other object-
oriented optimization or sampling techniques. 

The code is written in C/C++ and tested on various Unix platforms (Linux, Mac OS X, 
Cygwin MS Windows). MADS source code and other files needed to execute the synthetic 
problems presented here are available at http://mads.lanl.gov. 

3 ABAGUS 

ABAGUS11 is novel approach to global uncertainty and sensitivity analyses of modeling 
results utilizing concepts from agent-based modeling implemented in MADS. The explored 

 

Figure 1: Two-dimensional Rosenbrock (left) and Griewank (right) test functions with global minima at (1,1) 
and (0,0), respectively. 



Velimir V. Vesselinov and Dylan R. Harp 

 4

model parameter space is discretized and sampled by a particle swarm where the particle 
locations represent unique model parameter sets. Particle locations are optimized based on a 
model performance metric using a standard particle swarm optimization7 (PSO) algorithm. 
Model evaluations are stored in KD-Trees12, eliminating the need for model reruns for already 
evaluated parameter sets. ABAGUS sculpts the response surface to discourage reinvestigation of 
"collected" regions of the parameter space and encourage global exploration. ABAGUS utilizes a 
hierarchical discretization scheme that provides automatic refinement of the parameter-space 
exploration based on run-time performance. 

The performance of ABAGUS is tested on two-dimensional Rosenbrock and Griewank test 
functions (Fig. 1). The Griewank function has numerous local areas of attraction, but a single 
global minimum of zero at (0,0). In the two-dimensional case, the function has the shape of an 
‘egg carton’ that is depressed in the center. The obtained results are presented in Fig. 2. In this 
case, ABAGUS effectively identifies the portions of the parameter space that are defined by 
objective function (OF) below 20 and 0.1 for Rosenbrock and Griewank functions, respectively. 

In addition, ABAGUS’ performance is compared with standard Monte Carlo sampling. In this 
case, the test problem is based on a two-dimensional parabolic function with a single well-
defined global minimum at (0,0) (Fig. 3). Monte Carlo analysis is performed using Improved 
Distributed Latin Hypercube Sampling4 (IDLHS) which is implemented in MADS as well. Both 
techniques are tested to identify the fraction of the parameter space that is defined by an 
objective function less than 160; the acceptable portion of the parameter space is a circular 
domain centered around the global minimum. The area of this circle is about 5% of the explored 
parameter space. In this case, the problem is similar to identifying model predictions with a 

 

Figure 2: ABAGUS uncertainty estimates for Rosenbrock (left) and Griewank (right) functions. 
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probability of occurrence 5%. The estimated fractions of the parameter space as a function of the 
number of model evaluations are also presented in Fig 3. The results demonstrate that ABAGUS 
converges faster than the Monte Carlo analysis; ABAGUS needs about 20,000 evaluations to 
converge while the Monte Carlo method requires more than 140,000 evaluations. 

4 SQUADS 

Squads13 is a newly developed adaptive hybrid optimization algorithm, providing a global 
optimization strategy with local optimization speedup. Squads combines an adaptive particle 
swarm optimization (global) strategy and a Levenberg-Marquardt (local) optimization strategy. 
In contrast with other existing hybrid optimization strategies, the global and local algorithms are 
adaptively coupled in Squads; the global and local optimizations steps are iteratively performed 
based on adaptive rules that depend on the optimization progress. The local optimization speedup 
is performed on selected particles from the swarm. The coupling of the global and local 
optimization techniques within Squads utilizes transformation of the parameter space within the 
local optimization speedup to enhance the local optimization performance near parameter 
boundaries. This allows the PSO strategy to be performed in bounded parameter space while 
Levenberg-Marquardt strategy to be performed in unbounded parameter space.  Squads performs 
these transformation using trigonometric functions13, which allows for seamless transitions 
between global and local optimization strategies. 

The robustness and efficiency of Squads is compared to Levenberg-Marquardt14, particle 
swarm optimization (PSO)7, TRIBES8 (an adaptive particle swarm optimization algorithm), and 
hPSO15 (an alternative hybrid optimization algorithm). The comparisons are performed on two 
polynomial test functions the Rosenbrock and Griewank functions (Fig. 1). The analyses include 

  

Figure 3: A 2D parabolic test problem (left) with global minimum at (0,0) applied to estimate convergence as a 
function of the number of model evaluations for the Monte Carlo and ABAGUS analyses. 
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two-, five and ten-dimensional versions of these functions. 
The response function defined by the Rosenbrock function is comprised of a large valley with 

an ill-defined, shallow global minimum; the global minimum is difficult to identify by either 
local and global optimization strategies. In the two dimensional case, the test function is 
unimodal with a single global minimum; in cases with greater than two dimensions, there are 
multiple suboptimal local minima. 

The multidimensional Griewank function is important for testing of hybrid optimization 
strategies because it becomes more difficult to minimize for global strategies as its 
dimensionality increases. However, although counterintuitive, the Griewank function becomes 
easier to minimize for local strategies as the dimensionality increases. Therefore, with the 
increase in dimensionality, it is expected that LM performance will improve while PSO, TRIBES 
and hPSO performance will decrease. For different parameter-space dimensionality, the 
performance of hybrid strategies will depend on how efficiently they adaptively balance between 
the local and global strategies. At low dimensionality (D=2), the hybrid strategies should benefit 
from the global strategy; at high dimensionality, the hybrid strategies should benefit from the 
local strategy. 

The robustness of each algorithm is quantified by the fraction of optimization runs that 
identify the global minimum of the test function. The efficiency of the algorithms is quantified 
by statistical representations of the number of function evaluations necessary to reach the global 
minimum of the test functions on successful runs (Fig. 4). The performance of Squads, 
considering both optimization robustness and computational efficiency, is superior to the other 
algorithms. 

5 CONCLUSIONS 

ABAGUS provides a discretized global uncertainty analysis approach filling the gap between 
local and sampling-based global approaches. ABAGUS is an attractive alternative for complex 
problems where it is recognized that a local analysis is inappropriate, but for which a rigorous 
sampling-based global analysis is infeasible due to computational constraints. The results 
obtained from a single ABAGUS run can be applied to estimate simultaneously uncertainties, 
sensitivities, and correlations in and between model parameters and predictions (uncertainty 
analysis of model prediction is sometimes called predictive analysis). ABAGUS results can be 
applied for decision support based on a predefined performance metric or compliance criteria. 
Squads is a new adaptive global hybrid optimization strategy for computationally intensive 
inverse problems involving models representing the behavior of complex systems. The algorithm 
shows superior performance compared to other commonly used optimization algorithms. The 
newly developed algorithms are implemented in the code MADS. 
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Figure 4: Boxplots of the number of function evaluations to reach the global minimum for the 2D, 5D, and 10D 
Rosenbrock (left) and Griewank (right) functions. The boxes represent the 25th to 75th percentile ranges, the bars 

inside of the boxes represent the median values, and the whiskers represent the min and max values. The number of 
successful runs out of 1000 for each strategy is stated above the boxes. 
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