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Abstract We use log permeabilities and porosities obtained from single-hole pneumatic packer 

tests in six boreholes drilled into unsaturated fractured tuff near Superior, Arizona, to postulate, 

calibrate and compare five alternative variogram models (exponential, exponential with linear 

drift, power, truncated power based on exponential modes, and truncated power based on 

Gaussian models) of these parameters based on four model selection criteria (AIC, AICc, BIC 

and KIC). As all four criteria favour the first three of these variogram models, we adopt the three 

favoured models to parameterize log air permeability and porosity across the site via kriging in 

terms of their values at selected pilot points and at some single-hole measurement locations. For 

each of the three variogram models we estimate log air permeabilities and porosities at the pilot 

points by calibrating a finite volume pressure simulator against two cross-hole pressure data sets 

from sixteen boreholes at the site. The traditional Occam’s window approach in conjunction with 

AIC, AICc, BIC and KIC assigns a posterior probability of nearly 1 to the power model. A 

recently proposed variance window approach does the same when applied in conjunction with 

AIC, AICc, BIC but spreads the posterior probability more evenly among the three models when 
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used in conjunction with KIC. We compare the abilities of individual models and MLBMA, 

based on both the Occam’s window and variance window approaches, to predict space-time 

pressure variations observed during two cross-hole tests other than those employed for 

calibration. Individual models with the largest posterior probabilities turned out to be the worst 

or second worst predictors of pressure in both validation cases. Correspondingly, some 

individual models predicted pressures more accurately than did MLBMA.  MLBMA was far 

superior to any of the individual models in one validation test and second to last in the other 

validation test in terms of predictive coverage and log scores. 
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INTRODUCTION 

 

Hydrologic analyses typically rely on a single conceptual-mathematical model. Yet 

hydrologic environments are open and complex, rendering them prone to multiple interpretations 

and mathematical descriptions. Adopting only one of these may lead to statistical bias and 

underestimation of uncertainty. Thus, hydrologists have developed several approaches to weigh 

and average predictions generated by alternative models (Neuman 2003; Neuman and Wierenga 

2003; Ye et al. 2004; Poeter and Anderson 2005; Beven 2006; Refsgaard et al. 2006). 

Bayesian model averaging (BMA) (e.g., Hoeting et al. 1999) provides an optimal way to 

combine the predictions of several competing models and to assess their joint predictive 

uncertainty. Neuman (2003) proposed a maximum likelihood (ML) version of BMA (MLBMA) 

that renders it compatible with ML methods of model calibration (Carrera and Neuman 1986; 

Hernandez et al. 2006) even in cases where prior information about the parameters is not 

available (such information being a prerequisite for the use of BMA). In the framework of 

MLBMA, if ∆ is a quantity one wants to predict given a discrete set of data D, then its posterior 

(conditional) mean and variance are (Neuman 2003)  
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where model iM  has parameters , ib ˆ| , ,i iE M⎡ ⎤∆⎣ ⎦b D  and ˆ| , ,i iVar M⎡ ⎤∆⎣ ⎦D b  are posterior mean 

and variance of ∆ under the i-th alternative model, and  is a maximum likelihood estimate of ˆ
ib
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ib  based on the likelihood ( )ˆ| ,i ip MD b . The posterior probability of the i-th alternative model, 

 is approximated on the basis of Occam’s window by (Ye et al. 2004)  ( |ip M D)
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where mini iIC IC IC∆ = − , i iIC KIC=  being the Kashyap (1982) information criterion for the i-th 

model and minIC  is the minimum value among the models. Alternatively, posterior model 

weights are sometimes assigned by setting iIC  equal to information theoretic criteria (Poeter and 

Anderson 2005; Ye et al. 2008) such as AIC (Akaike 1974), AICc (Hurvich and Tsai 1989) or the 

Bayesian criterion BIC (Schwarz 1978). Ye et al. (2008) explain that KIC is the only one among 

these criteria which validly discriminates between models based not only on the quality of model 

fit to observed data and the number of model parameters but also on how close are the posterior 

parameter estimates to their prior values and the information contained in the observations.  

Experience indicates (and our results below confirm) that Eq. (3) tends to assign posterior 

probabilities or model weights of nearly 1 to one (the best) model and nearly zero to all other 

models. Tsai and Li (2008) suggest that this is because Occam’s window is often too narrow to 

accommodate models that are not the best but still potentially acceptable. As a remedy, they 

propose to rely on a broader variance window obtained upon scaling iIC∆  in Eq. (3) by a factor 

α  selected subjectively by the analyst based on a desired level of significance, which determines 

the size of the variance window: /c nα = , where n is the number of observation data and c is a 

coefficient which depends on the window size and desired significance level. 

We use log permeabilities and porosities obtained from single-hole pneumatic packer 

tests in six boreholes drilled into unsaturated fractured tuff near Superior, Arizona, to postulate, 
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calibrate and compare five alternative variogram models of these parameters based on AIC, 

AICc, BIC and KIC. As all four criteria favour the first three of these variogram models, we 

adopt the three favoured models to parameterize log air permeability and porosity across the site 

via kriging in terms of their values at selected pilot points and, optionally, at some single-hole 

measurement locations. For each of the three variogram models we estimate log air 

permeabilities and porosities at the pilot points by calibrating a finite volume pressure simulator 

against two cross-hole pressure data sets from sixteen boreholes at the site. Finally, we compare 

the abilities of individual models and MLBMA, based on both the Occam’s window and 

variance window approaches, to predict space-time pressure variations observed during two 

cross-hole tests other than those employed for calibration.  

 

 

BACKGROUND ON THE APACHE LEAP RESEARCH SITE 

 

The previous University of Arizona Apache Leap Research Site (ALRS) near Superior, Arizona 

is a block of unsaturated fractured tuff measuring 64 55 46× ×  m (Fig. 1). The test site includes 

sixteen boreholes, three vertical (V1, V2, V3) and thirteen inclined at 45° (X1, X2, X3, Y1, Y2, 

Y3, Z1, Z2, Z3,  W1, W2, W2A, W3). Several pneumatic cross-hole tests were conducted at the 

ALRS (Illman et al. 1998; Illman and Neuman 2001); a summary of the conditions for each test 

is presented in Table 1. For inverse calibration we selected the cross-hole tests labelled PP4 and 

PP5; we validated the calibrated models by predicting pressure variations during cross-hole tests, 

PP6 and PP7. During each test air was injected into a given interval and responses were 

monitored in 13 relatively short intervals (0.5–2 m) and 24 relatively long intervals (4–42.6 m) 
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shown in Fig. 1. The hydrologic parameters controlling air-flow are air permeability k and air-

filled porosity φ , both attributed largely to air-filled fractures transecting water-saturated porous 

tuff.  

 

 

Table 1 Cross-hole tests conditions at ALRS (Illman et al. 1998)  
Injection Interval Test Flow regime 

Location Length (m)
Injection Rate (kg/s)

PP4 Const. Rate Y2-2 2 10-3

PP5 Step* X2-2 2.2 10-4

PP6 Step* Z3-2 2 10-4

PP7 Step* W3-2 1.2 10-4

* Only data from the first stage was included 
 

 

 

 

ALTERNATIVE GEOSTATISTICAL MODELS OF AIR PERMEABILITY AND AIR-

FILLED POROSITY 

 

Log10 k. Ye et al. (2004) used MLBMA to investigate the geostatistical properties of log air 

permeability k (m2) at ALRS by postulating several alternative variogram models based on 184 

data of log10k obtained via steady-state interpretation of stable pressure data from pneumatic 

injection tests in 1-m long intervals along six boreholes, V2, W2A, X2, Y2, Y3 and Z2 in Fig. 1 

(Guzman et al. 1996). Ye et al. (2004) fitted seven variogram models (power P, exponential E, 

exponential with first order drift E1, exponential with second order drift E2, spherical S, 

spherical with first order drift S1, and spherical with second order drift S2) to this data set using 
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the adjoint state maximum likelihood cross validation (ASMLCV) method of Samper and 

Neuman (1989) in conjunction with universal kriging and generalized least squares methods. 

They found that the first three models (P, E and E1) consistently dominated in terms of their 

posterior model probability. We expanded their list of models to include truncated power models 

based on Gaussian (Tpg) and exponential (Tpe) modes (Di Federico and Neuman 1997), fitted 

the variogram models using the same data set and the same procedure, computed the values of 

four model selection criteria (AIC, AICc, BIC and KIC) and computed the corresponding 

posterior model probability. Table 2 lists the results of this analysis, where posterior probabilities 

or (in the case of AIC and AICc) model weights are based on equal prior probabilities p(Mk) (the 

neutral choice) for all models. Model E1 is associated with the smallest negative log-likelihood 

value NLL (e.g. Carrera and Neuman 1986) and thus provides the best fit to the data. When using 

Occam’s window, model ranking varies depending on the information criterion. Whereas AIC 

and AICc strongly prefer E1 and P in this order over all other models, BIC strongly prefers P. On 

the other hand, KIC shows a slight preference for E1 over P while considering E to be a not 

much less promising option. Whereas in terms of NLL the truncated power models, Tpg and Tpe, 

fit the sample variogram as well as does P (Fig. 2), they are ranked lower by all four model 

selection criteria due to their larger number of parameters. KIC is the only such criterion showing 

a clear preference for Tpg over Tpe. Alternatively, a variance window of size 4 Dσ  and a 

significance level of 5%, leads to 0.078α =  and posterior probabilities that are distributed more 

evenly among all models, and the difference in magnitude between probabilities based on 

different information criteria is reduced.  
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Table 2 ASMLCV results for log10 k  

 Power P Exponential E Exponential, 1st 
order drift E1 Tpe Tpg 

Numb. Parameters 2 2 6 3 3
Numb. Observations 184 184 184 184 184

Sill/Coefficient 0.29 0.72 0.51 0.08 0.12
Integral scale/Exponent 0.46 1.84 1.24 0.23 0.23

Lower cutoff  51.14 10−×  41.56 10−×
NLL 352.19 361.01 341.57 352.19 352.19
AIC 356.19 365.01 353.57 358.19 358.19

Ranking 2 5 1 4 3
AICp ,  %, 1α =  18.33 0.22 67.97 6.73 6.74

AICp ,  %, 0.078α =  21.79 13.93 24.90 19.69 19.69
AICc 356.25 365.07 354.04 358.32 358.32

Ranking 2 5 1 4 3
AICcp ,  %, 1α =  21.07 0.26 63.70 7.48 7.50

AICcp ,  %, 0.078α =  21.54 15.26 23.48 19.86 19.86
BIC 362.62 371.44 372.86 367.83 367.83

Ranking 1 4 5 2 3
BICp ,  %, 1α =  85.80 1.04 0.51 6.33 6.32

BICp ,  %, 0.078α =  24.94 17.67 16.71 20.34 20.34
KIC 369.58 370.15 369.45 385.77 371.10

Ranking 2 3 1 5 4
KICp ,  %, 1α =  30.43 22.90 32.42 0.01 14.24

KICp ,  %, 0.078α =  22.44 21.94 22.55 11.92 21.14
Average log scores 49.6 47.8 48.3 69.6 53.6

Notes: All p(Mi|D) were computed assuming p(Mi) = 1/5.  
The first order drift is given by , with coefficients determined in the manner of (Ye et al 
2004) are a

0 1 2 3( )f a a x a y a= + + +x z
0 = – 15.1805, a1 = 0.03717, a2 = 0.01061 and a3 = 0.04633. 

 

Log10 φ. We conducted a similar geostatistical analysis of 109 log air-filled porosity (log10φ ) 

data obtained by type-curve interpretation of the recovery phase of single-hole tests conducted 

on a nominal scale of 1 m (Illman 2005). As there appears to be no discernible cross-correlation 

between the log10φ  and log10k data we analyzed each set separately. Four alternative variogram 

models were postulated for log10φ : exponential E, spherical S, truncated power based on 

Gaussian Tpg and exponential Tpe modes. Fig. 3 depicts the models fitted to the sample 
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variogram and Table 3 lists the corresponding statistics. In terms of NLL the truncated power 

models Tpe and Tpg fit the data almost equally well and somewhat more closely than do E and S. 

Posterior probabilities based on Occam’s window and AIC, AICc and BIC rank the two truncated 

power models as best. However, KIC ranks E much higher than all other models. By using a 

variance window of size 4 Dσ  at a significance level of 5% ( 0.1α = ), posterior probabilities are 

distributed more evenly among the models but the ranking is not changed.  

 

Predictive capability of variogram models. We evaluate the predictive capability of variogram 

models for  and 10log k 10log φ  by computing the log scores of the cross-validation errors in the 

manner of Ye et al. (2004). The data set was split into two parts, eliminating the data 

corresponding to one borehole at a time, obtaining ML estimates of the parameters and using 

these to predict the eliminated data. The quality of the predictions was evaluated by the log 

scores. We repeated the procedure for each data set for  and 10log k 10log φ . The log score 

 (Volinsky et al. 1997), approximated by  (Ye et al. 

2008), is a measure of the predictive capability of a model. The lower the predictive log score of 

model M

ln ( | , )v
kp M− D Dc cˆln ( | , , )v

k kp M− D b D

k based on data Dc (the calibration data set), the smaller the amount of information in Dv 

(the validation data set) not covered by model Mk based on Dc. The log score of a model is given 

by 
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where Nv is the number of data points in , vD ˆ v
iD  and 2

iσ  are the i-th kriged variable and the 

kriging variance, respectively, based on the parameter estimates  for model ˆ
kb kM . The results 
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for average predictive log scores are listed in the last row of Table 2 for  and Table 3 for 10log k

10log φ . For , models E, E1 and P have log scores ranging from 47.8 to 49.6, while the 

log scores of Tpg and Tpe are considerable larger, 53 and almost 70, respectively.  For 

10log k

10log φ , 

model E has the lowest log scores with 36.2, models S and Tpg have log scores of about 40 and 

Tpe has largest log socres. Based on these results we retain only models E, E1 and P to 

parameterize  while we retain only model E to parameterize 10log k 10log φ . 

 

Table 3. ASMLCV results for log10 φ  

 Exponential
E 

Spherical
 S Tpe Tpg 

Numb. Parameters 2 2 3 3
Numb. Observations 109 109 109 109

Sill/Coefficient 0.25 0.27 0.08 0.08
Integral scale/Exponent 1.03 0.46 0.37 0.35

Lower cutoff 0.29 0.25
NLL 181.1 189.9 174.7 175.3
AIC 185.1 193.9 180.7 181.3

Ranking 3 4 1 2
pAIC,  %, 1α =  5.89 0.07 53.17 40.86

pAIC,  %, 0.1α =  24.37 15.59 30.47 29.56
AICc 185.2 194.0 181.6 181.5

Ranking 3 4 2 1
pAICc,,  %, 1α =  7.21 0.09 45.57 47.14

pAICc,,  %, 0.1α =  24.71 15.81 29.67 29.82
BIC 191.0 199.8 189.6 190.1

Ranking 3 4 1 2
pBIC,,  %, 1α =  21.51 0.27 44.25 33.98

pBIC,,  %, 0.1α =  26.59 17.01 28.55 27.84
KIC 190.9 202.2 199.0 222.7

Ranking 1 3 2 4
pKIC,,  %, 1α =  98.00 0.33 1.67 ~0

pKIC,,  %, 0.1α =  41.23 23.23 27.33 8.21
Average log scores 36.2 40.1 54.8 39.3

Posterior probabilities were computed assuming p(Mk) = 1/4.  
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CALIBRATION OF AIRFLOW MODELS 

 

Following Vesselinov et al. (2001a; 2001b) we calibrate a finite volume pressure 

simulator (FEHM; Zyvoloski et al. 1999) against cross-hole pressure data using a parameter 

estimation code (MPEST; V. Vesselinov, personal communication; a parallelized version of 

PEST, Doherty 1994). Additional elements of the calibration process include geostatistical 

interpolation of log10k and log10φ  via kriging (GSTAT; Pebesma and Wesseling 1998) and a 

posteriori averaging of pressure at grid nodes along packed-off pressure monitoring intervals. 

Details of the simulation grid, the air-flow equation and its solution can be found in Vesselinov 

et al. (2001a); here we merely mention that the upper boundary condition was set to constant 

barometric pressure; monitoring intervals in which observed pressure showed a clear influence of 

atmospheric pressure fluctuations are not considered in the analysis. 

We parameterize  and 10log k 10log φ  geostatistically and estimate their values by inverse 

calibration at selected pilot points (de Marsily et al. 1984). We then project these estimates (with 

or without the available 184 1-meter scale  measurements) by kriging onto a grid. In the 

case of  the projection is done through 

10log k

10logy = k y*
1 1

Npp Na
i i j ji j

y yλ λ
= =

= +∑ ∑  where  is the 

value at any point within the simulated block,  are unknown values (parameters) at  pilot 

points, 

*y

iy ppN

jy  are known values at  measurement points, and aN iλ  and jλ  are kriging weights. 

Following Vesselinov et al. (2001a; 2001b) we set 32ppN = ; 29 pilot points are placed at the 

centers of pressure monitoring intervals (small dots in Fig. 1) and 3 are offset from the center of 

the injection interval to better represent air-flow. Of the 184 1-m  data 18 correspond to 

locations at pilot points and are included as priors in the manner discussed below, thus

10log k

166aN = . 
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Inversion entails minimizing the negative log-likelihood criterion (Carrera and Neuman 

1986) 

 

( ) 2 1 2
2 2( ) ln(2 ) ln ln ln lnps 1

s p s s s p p
s p

NLL N N N Nπ σ σ
σ σ p

− −ΦΦ
= + + + + + + +b Q Q  (5) 

 

where b is a vector of M parameters to be estimated, Ns is the number of observed state variables, 

Np is the number of prior parameter values, T
s s s sΦ = r Q r  is a generalized sum of square residuals 

of the state variable,  is a generalized sum of square residuals of the parameters, T
p p pΦ = r Q rp sQ  

and  are corresponding weight matrices (considered known), and pQ 2
sσ  and 2

pσ  are scalar 

multipliers (nominal variances, considered unknown) of the covariance matrices 2 1
s s sσ −=C Q  and 

 of measurements errors associated with state variables and prior parameter values, 

respectively. Whereas it is possible to consider temporal correlations between pressure 

measurements in each monitoring interval, we presently treat them as being uncorrelated with 

zero mean and a uniform variance. We adopt a similar assumption with regard to log 

permeability measurements, disregarding spatial or cross-correlations between any of the data, 

thereby rendering 

2
p pσ −=C Q 1

p

sQ  and  diagonal. pQ

Since 2
sσ  and 2

pσ  are independent of log10k and log10φ  values (parameters) at the pilot 

points, minimizing (4) with respect to these latter parameters is equivalent to minimizing 

s pµΦ = Φ + Φ  while treating 2 / 2
s pµ σ σ=  as an unknown. We perform this minimization using 

the regularization capability of PEST. In regularisation mode (Doherty 1994) PEST minimizes 

p
µ

pµΦ = Φ  subject to l
s sΦ ≤ Φ  (in practice l

s sΦ = Φ ) where l
sΦ  is typically set by the user to a 
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value slightly higher than the minimum value of sΦ  obtained without regularization (i.e., upon 

setting 0µ = ). During each optimization step the program computes iteratively a value of µ  

(treating it as a reciprocal Lagrange multiplier) which insures that l
s sΦ = Φ  and then minimizes 

p
µΦ . We repeat the process for various l

sΦ  till NLL attains its minimum, yielding ML estimates 

of µ  and the pilot point values.  

A first-order approximation of the covariance  of parameter estimates  is given by 

(Carrera and Neuman 1986) 

Σ b̂

1

2 2
ˆ

1ˆ( ) pT
s

s pσ σ

−

=

⎡ ⎤
= +⎢
⎢ ⎥⎣ ⎦ b b

Q
Σ b J Q J ⎥  (6) 

 

where J is a Jacobian matrix. If the estimate µ̂  of µ  is optimal (as we take it to be) then ML 

estimates of the nominal variances are given by ( ) ( )2 ˆˆ /s s sN Nσ = Φ +b p ˆ and 2 2ˆ ˆ /p sσ σ µ= . An 

alternative (not employed here) would be to specify µ̂ , compute  by minimizing b̂

ˆs pµΦ = Φ + Φ , obtain ML estimates of the nominal variances according to ( )2 ˆˆ /s s sNσ = Φ b  and 

, recompute ( )2 ˆˆ /p p Nσ = Φ b p
22ˆ ˆ ˆ/s pµ σ σ=  and repeat the process till NLL attains its minimum 

(Carrera and Neuman 1986). 

 

 

CALIBRATION OF AIR FLOW MODELS 
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Elsewhere we have tested three approaches to the calibration of air-flow models with and 

without prior information (Morales-Casique et al. 2008). Here we focus on the use of prior 

information during the calibration process. We calibrate log10k and log10φ  at 32 pilot points 

against observed pressures, fixing variogram parameters from Tables 2 and 3, including 18 

measurements of log10k at pilot points as priors in pΦ  and incorporating the remaining 166 of 

log10k values in the kriging process. The kriged log10k field is based on three alternative 

variogram models E1, E and P, while the kriging of log10φ  is based only on E. We calibrate the 

model jointly against pressure data from cross-hole tests PP4 and PP5. As noted earlier, we set 

 and  where I is the identity matrix. Computed pressures are compared with 

measured values during each test in Figures 4 and 5. Overall, the calibrated models fit the 

observed data reasonably well in most intervals. 

s =Q I Ip =Q

 

Table 4 shows the results of calibrating our models jointly against pressure data from 

cross-hole tests PP4 and PP6. In terms of NLL the best fit was obtained with log k variogram 

model P and the worst with model E1. Whereas AIC, AICc and BIC rank the models in this same 

order, KIC ranks E1 higher than E. Posterior probabilities based on AIC, AICc and BIC are 

similar and so we list only those corresponding to BIC and KIC. Using Ockam’s window leads to 

a preference for P at the virtual exclusion of the remaining two models regardless of which 

criterion is used. Using a variance window ( 0.049α =  which corresponds to a variance window 

of size 4 Dσ  and a significance level of 5%) also leads to a similar preference for P by BIC but a 

less pronounced preference for this model by KIC. Below we use both sets of posterior 

probabilities obtained with KIC to test the abilities of individual models, and MLBMA, to predict 

pressures observed during cross-hole tests PP6 and PP7. 
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Table 4 Results of joint calibration of cross-hole tests PP4 and PP5. 
Model E1 E P 

Parameters at pilot points 64 64 64 
Variogram parameters for 
log10k and log10φ  (fixed) 8 4 4 

Number of pressure data 462 462 462 
NLL 2451 2305 2176 
AIC 2579 2433 2304 

Rank AIC 3 2 1 
AICc 2599 2454 2324 

Rank AICc 3 2 1 
BIC 2846 2701 2571 

Rank BIC 3 2 1 
KIC 2702 2725 2673 

Rank KIC 2 3 1 
PBIC %, 1α =  2E-58 6E-27 99.99
PKIC %, 1α =  6E-05 5E-10 99.99

PBIC %, 0.049α =  0.11 3.91 95.99
PKIC %, 0.049α =  27.81 15.70 56.50

Model selection criteria: AIC = Akaike; AICc = Modified Akaike; BIC = Bayesian; KIC = Kashyap.  
PIC  = posterior probability based on model information criteria IC for a given variance window (α = 1 corresponds 
to Occam’s window). 
 

 

PREDICTION OF PRESSURES DURING CROSS-HOLE TESTS PP6 AND PP7 

 

Air injection during cross-hole tests PP6 and PP7 (Illman et al. 1998) took place into 

different intervals, and at different rates, than those in tests PP4 and PP5 (Table 1). Inverse 

calibration against pressure data from the latter two tests yielded ML estimates  of the 

parameters and a covariance matrix of the corresponding estimation errors (6). To obtain 

corresponding statistics of the state variable, in this case air-pressure, one must either linearize 

the flow equation or solve it for numerous random realizations of the parameter vector b  about 

b̂
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its ML estimate . We have chosen the second option and conducted Monte Carlo simulations 

assuming the estimation error 

b̂

( ˆ )−b b  to be multivariate Gaussian with zero mean and 

covariance  in the vicinity of . This allowed us to generate random realizations of b  

using standard methods such as Cholesky factorization of  followed by random 

draws of  where ζ  is a vector of standard uncorrelated normal variables (Clifton and 

Neuman 1982). Following this procedure we have generated 150 realizations of the parameter 

vector and solved the forward problem for each of them. In some cases the nonlinear solver 

failed to converge; the corresponding partial results were discarded. Our results are thus based on 

119, 67 and 97 MC runs with models E1, E and P, respectively for test PP6 is based on and 104, 

62 and 92 runs for test PP7. In addition to predicting pressure with individual models, we also 

generated MLBMA predictions by (1) and (2) based on posterior model probabilities in Table 5 

obtained with a variance window. 

ˆ( )Σ b b̂

ˆ( ) T=Σ b U U

=b Uζ

Figures 6 and 7 compare predicted pressures averaged over all MC simulations against 

observed pressure for cross-hole tests PP6 and PP7. Each plot includes average predicted 

pressure from models E1, E and P plus the MLBMA estimate. For some data records average 

predicted pressure is close to the observed data; in other cases the prediction is poor, particularly 

at the injection interval (Z32 for PP6 and W32 for PP7) where models E and P over-predict 

pressure by orders magnitude while model E1 under-predicts it. In addition, prediction is poor 

for all models at interval X1 in test PP7 (Figure 7), were observed pressure shows a large 

pressure response to injection in interval W32; evidence of this connectivity was absent in the 

calibration tests PP4 and PP5, and thus was not captured in the estimated parameters. We 

attribute this poor prediction in part to the extreme heterogeneity of the fractured tuff at the site 

and our disregard of barometric pressure fluctuations during the tests. We also predicted pressure 
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for both tests, PP6 and PP7 based on a single model run with the best parameter estimates . 

Predicted pressures from a single run constitute a biased estimate of the ensemble mean pressure 

and do not provide information about the variance of the estimate. The results are shown in 

Figures 8 and 9 for tests PP6 and PP7, respectively. As before the prediction is poor at the 

injection intervals Z32 for PP6 and W32 for PP7, and at X1 for PP7, but now all models 

consistently under predict pressure at those intervals. Table 5 compares both estimates of 

pressure based on the sum of the squared errors SSE. Average predicted pressure based on MC 

simulations leads to one model clearly outperforming the other two by orders of magnitude. 

Results from a single run on the other hand show SSEs of the same order of magnitude. 

Excluding intervals with poor predictions (marked as B in Table 5) leads to model P being the 

most accurate in test PP6 and model E1 in test PP7.  MLBMA is second in test PP6 while is third 

(MC simulations) and first (single run) in test PP7. 

b̂

 

Table 5 Sum of squared errors (SSE) 
Test Prediction Method Option E1 E P MLBMA 
PP6 MC simulations A 5.86.E+03 4.24.E+06 4.07.E+05 4.48.E+05 

  B 14.29 6.28 3.96 5.78 
 Single run with  b̂ A 1.25.E+04 1.26.E+04 1.22.E+04 1.23.E+04 
  B 24.44 23.96 15.45 18.23 

PP7 MC simulations A 3.81.E+03 2.71.E+05 5.85.E+10 1.87.E+10 
  B 43.43 1332.55 68.64 69.50 
 Single run with  b̂ A 4.37.E+03 2.74.E+03 4.45.E+03 4.04.E+03 
  B 47.04 48.34 49.45 37.74 

A – Includes all data records; B – Excludes records from Z32 in PP6 and W32 and X1 in PP7 
 

We evaluate the predictive capabilities of each model and of MLBMA by computing 

their log scores and predictive coverage. The log score is computed by (4) with ˆ v
iD  and 2

iσ  are 
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the i-th sample mean and variance of predicted pressure based on MC realizations of the  

parameter estimates  for model ˆ
kb kM . The predictive log score of MLBMA is (Ye et al. 2008) 

1

ˆln ( | ) ln ( | , , ) ( | )
K

v c v c c
k k k

k

p p M p
=

− = − ∑D D D θ D M D

9

     (7) 

Table 6 lists the predictive log score of each model and MLBMA based on the variance window 

approach for both validation tests PP6 and PP7. Overall model E1 has the lowest log score of the 

models and MLBMA for both validation tests, despite being ranked second by KIC and third, 

with 0.1% posterior probability, by BIC (Table 4). The main source of predictive error for model 

E1 is the injection interval (Z32) in test PP6, while for test PP7 the main source are intervals X1 

(large predictive errors) and Z1 (very small variance, 2
1 10Zσ −∼  and significant predictive error, 

thus the log score penalizes it). For the remaining models and MLBMA the ranking changes for 

each validation test; MLBMA ranks second and third in test PP6 and PP7, respectively. The 

largest log score for MLBMA and models P and E comes from the injection intervals (Z32 in 

test PP6 and W32 in test PP7) and X1 for test PP7 where these models and MLBMA have large 

prediction errors (Figures 6 and 7). Excluding low prediction intervals (Z32 in PP6 and W32, Z1 

and X1 in PP7, results denoted by Total B in Table 6) model E1 ranks first in test PP6 and last in 

PP7; in turn, MLBMA ranks second and first in PP6 and PP7, respectively.    

 

Table 6 Predictive log scores for validation tests PP6 and PP7 
 PP6 PP7 
 E1 E P MLBMA E1 E P MLBMA 

Total 3.86E+03 1.33E+05 7.31E+04 7.12E+04 5.69E+05 1.17E+06 1.85E+10 1.76E+10 
Rank 1 4 3 2 1 2 4 3 

Total B 302 7877 2612 613 17466 9627 6563 3828 
Rank B 1 4 3 2 4 3 2 1 

X1 12.10 228.61 29.92 21.87 262902 160764 860129 230284 
X21 3.15 12.37 2.92 2.96 12.11 9.98 7.76 7.46 
X22 8.61 72.14 30.98 17.72 6.54 8.93 23.78 16.61 
X23 3.87 4.35 4.34 4.11 7.75 51.31 7.88 15.70 
X3 0 0 0 0 4.94 13.05 5.70 6.06 
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Y12 0 0 0 0 0 0 0 0 
Y21 5.80 7.08 5.88 5.78 138.52 3.17 102.60 11.07 
Y22 17.21 1051.60 8.92 9.37 312.11 1584.71 421.18 339.41 
Y23 9.69 199.73 37.57 20.52 13.14 3.16 41.77 5.62 
Y31 2.00 1.88 1.87 1.88 30.90 2.87 14.81 3.88 
Y32 0 0 0 0 3.61 3.29 5.44 2.86 
Y33 4.41 4.14 4.44 4.36 5.89 18.46 10.87 7.93 
Z1 0 0 0 0 288598 3.88 11.07 4.52 
Z21 5.06 4.18 4.28 4.45 74.98 4.27 10.25 7.47 
Z22 0 0 0 0 12.96 4.17 4.35 3.78 
Z23 0 0 0 0 9.44 4.43 4.05 3.80 
Z24 0 0 0 0 8.48 6.31 3.95 4.18 
Z31 25.72 44.68 116.32 79.80 40.56 7.72 13.08 13.02 
Z32 3560 124722 70499 70538 48.65 108.15 8.63 11.44 
Z33 0 0 0 0 16158.55 12.16 5.73 5.94 
V1 11.03 41.15 11.22 11.61 7.86 7.30 16.54 8.69 

V22 23.53 1299.36 310.17 65.82 89.17 973.72 772.89 199.12 
V31 33.60 404.82 134.49 74.37 82.83 59.35 48.71 56.15 
V32 57.17 3910.46 1638.93 180.89 125.58 2345.18 1420.19 307.88 
V33 5.28 18.04 16.15 9.00 10.30 16.12 98.75 6.67 
W1 4.82 339.52 64.06 9.22 211.10 632.94 221.89 233.96 

W2A1 5.15 38.06 23.25 11.43 0 0 0 0 
W2A2 9.58 145.30 67.56 21.93 7.36 6.24 13.55 7.95 
W2A3 5.33 12.84 10.44 6.97 3.85 4.94 11.81 3.92 
W2A4 3.12 4.69 3.14 3.12 0 0 0 0 
W31 46.00 31.74 85.12 45.39 39.21 3734.80 3267.21 2537.42 
W32 0 0 0 0 158.01 997467 1.847E+10 1.762E+10 

Total B and Rank B correspond to predictive log scores excluding low prediction intervals (Z32 in PP6 and W32, Z1 
and X1 in PP7). 
 

 

Another measure of the predictive capabilities of a model is its predictive coverage, the 

percentage of observed data that fall within a given prediction interval around average predicted 

pressure. Prediction intervals were computed by confidence intervals assuming the errors are 

normally distributed and for a confidence level of 95%. Table 7 lists the results obtained based 

on 776 observed data for test PP6 and 829 for test PP7. Among individual models, model P has 

the best predictive coverage for test PP6, while for test PP7 it is second to model E. While 

MLBMA has a superior predictive coverage than any of the three individual models for test PP7, 

it is second to last for test PP6. Excluding as before low prediction intervals (Z32 in PP6 and 
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W32, Z1 and X1 in PP7) increases the predictive coverage of the models and MLBMA but does 

not change the rankings. 

 

Table 7 Predictive coverage for validation tests PP6 and PP7 
PP6 PP7 Interval E1 E P MLBMA E1 E P MLBMA

Total 5.54 9.54 10.16 7.63 6.13 18.04 12.96 31.48
Rank 4 2 1 3 4 2 3 1
X1 0.13 0 0.13 0 0 0 0 0
X21 16.62 0.13 46.39 20.49 1.81 93.24 0 8.08
X22 0.77 0 0.39 0.13 6.51 94.09 99.03 98.31
X23 14.30 14.82 17.40 12.76 0 0 0.36 93.61
X3 0 0 0.13 0 24.00 0.24 7.60 95.54
Y12 0 0 0 0 0.84 2.17 1.69 1.81
Y21 3.61 0 29.38 9.41 0 5.79 0 1.81
Y22 0.39 0 1.68 1.03 0 0.24 0.24 0.24
Y23 0.52 0.13 0.26 0.64 0.24 34.86 0.36 0.97
Y31 0.64 27.06 23.84 20.88 3.26 73.46 0.48 7.36
Y32 0 4.25 0.39 0.26 15.68 0.12 11.94 60.31
Y33 0 0 0 0 80.10 0.12 1.45 91.31
Z1 0 4.12 0 0 0 61.88 0.24 5.07
Z21 0 40.08 0 0 1.21 12.42 0.72 1.21
Z22 12.50 41.24 0 14.56 4.22 0 37.15 49.70
Z23 23.20 61.86 54.38 48.84 1.69 0 24.61 57.54
Z24 2.84 66.11 56.19 50.77 2.17 0 30.40 41.62
Z31 1.80 25.64 60.44 39.43 1.21 6.76 3.14 2.77
Z32 0 0 0.13 0.13 0.60 0.48 3.86 3.62
Z33 1.93 0 0 0 0 0 13.51 62.85
V1 1.29 1.29 1.16 2.06 2.90 6.15 0.84 3.14
V22 0 0 0 0 0.36 0.60 0.12 0.48
V31 0.13 0 0 0 0.36 0.36 0.60 0.36
V32 0 0 0 0 0 0.24 0.36 0.36
V33 0.39 0.39 0.13 0.52 0.72 79.01 0.36 21.23
W1 0.90 0.13 0 0.26 0.24 0.12 0.24 0.24
W2A1 33.25 15.85 14.82 1.16 11.70 61.76 97.47 94.21
W2A2 0 0 0 0 2.05 6.76 0.48 2.17
W2A3 2.71 0.26 0.13 0.26 22.32 2.65 3.26 63.57
W2A4 58.89 0.90 8.89 19.07 10.98 33.66 2.29 40.65
W31 0.26 0.52 0 0.26 0.97 0 72.01 97.23
W32 0.13 0.39 8.89 1.16 0 0 0 0
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CONCLUSIONS 

 

We have shown that it is possible to employ MLBMA in complex models, illustrated 

how to include prior information and applied the method to air flow models in unsaturated tuff. 

We calibrate log10k and log10φ  at selected pilot points against observed pressures in two 

pneumatic injection tests (PP4 and PP5) and including prior information about log10k. All of the 

calibrated models reproduce satisfactorily the observed data set. We computed model 

discrimination criteria and used them to compute posterior model probabilities based on Occam’s 

window and a broader window variance. The first approach leads to selecting with probability of 

almost 1 the model with the lowest fitting error and neglecting the remaining models. When a 

variance window of 4 Dσ  is employed, this leads to more equilibrated posterior probabilities as 

long as these are computed using KIC. When posterior probabilities are computed using AIC, 

AICc, or BIC even the use of a variance window lead to the best model being assigned posterior 

probability of almost 1. 

The results of the calibration were validated against an independent data set consisting of 

two cross-hole tests (PP6 and PP7) were injection took place in a different location than the data 

set used in the calibration. During this stage the model ranked second by KIC, and discarded by 

AIC, AICc, or BIC, yielded the most accurate results. Since only KIC based posterior 

probabilities recognized that no model was clearly dominant supports the asseveration by Ye et 

al. (2008) that KIC better accounts validly for the likelihood of prior parameter estimates and has 

the ability to discriminate between models based not only on their number of parameters and 

sample size but also on how close are the posterior parameter estimates to their prior values and 

how much expected information is contained, on average, in each observation. 
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We also evaluated the predictive capabilities of MLBMA based on tests PP6 and PP7. 

Predicted pressures using MLBMA were less accurate than some individual models, due to the 

fact that the individual model with the largest posterior probability was the worst or second worst 

predictor in both validation cases. In terms of predictive coverage, MLBMA was far superior to 

any of the individual models in one validation test and second to last in the other validation test.  

We attribute the mixed results obtained to the fact that the medium is highly 

heterogeneous, hydrologic parameters depend not only on spatial location but also on the flow 

regime/pattern and that the model space used in our test was under-sampled, meaning that other 

plausible descriptions of spatial distribution of parameters were not included. 
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Fig. 1 Borehole arrangement and location of packers during cross-hole tests at ALRS (from 

Vesselinov et al. 2001) 

 

Fig. 2 Variogram models for log10 k.  

 

Fig. 3 Variogram models for log10 φ. 

 

Fig. 4 Pressure buildup (kPa) versus time (days) during cross-hole test PP4. Calibrated response 

by variogram models: E1 = squares, E = triangles, P = big circles. Observed data = small circles. 

 

Fig. 5 Pressure buildup (kPa) versus time (days) during cross-hole test PP5. Calibrated response 

by variogram models: E1 = squares, E = triangles, P = big circles. Observed data = small circles. 

 

Fig. 6 Pressure buildup (kPa) versus time (days) during cross-hole test PP6. Observed data = 

small circles. Predicted results averaged over MC simulations using variogram models: E1 = 

squares, E = triangles, P = big circles. Empty circles correspond to MLBMA prediction. 

 

Fig. 7 Pressure buildup (kPa) versus time (days) during cross-hole tests PP7. Observed data = 

small circles. Predicted results averaged from MC simulations using variogram models: E1 = 

squares, E = triangles, P = big circles. Empty circles correspond to MLBMA prediction. 
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Fig. 8 Pressure buildup (kPa) versus time (days) during cross-hole test PP6. Observed data = 

small circles. Predicted results from a single model run with the best parameters, for variogram 

models: E1 = squares, E = triangles, P = big circles. Empty circles correspond to MLBMA 

prediction. 

 

Fig. 9 Pressure buildup (kPa) versus time (days) during cross-hole test PP7. Observed data = 

small circles. Predicted results from a single model run with the best parameters, for variogram 

models: E1 = squares, E = triangles, P = big circles. Empty circles correspond to MLBMA 

prediction. 
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